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Doublon bottleneck in the ultrafast relaxation dynamics of hot electrons in 1T -TaS2
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Employing time-resolved photoelectron spectroscopy we analyze the relaxation dynamics of hot electrons in
the charge density wave/Mott material 1T -TaS2. At 1.2 eV above the Fermi level we observe a hot electron
lifetime of 12 ± 5 fs in the metallic state and of 60 ± 10 fs in the broken symmetry ground state—a direct
consequence of the reduced phase space for electron-electron scattering determined by the Mott gap. Boltzmann
equation calculations which account for the interaction of hot electrons in a Bloch band with a doublon-holon
excitation in the Mott state provide insight into the unoccupied electronic structure in the correlated state.
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The lifetime of an excited, hot electron is determined by the
imaginary part of the self-energy and for bulk metals [1,2] and
semiconductors [3] a comprehensive understanding has been
developed. For materials with strong electron correlations
such insight is missing because (i) the electronic structure is
considerably more complex and (ii) the excitation of interest
may modify the electronic structure hosting it. In recent years
established experimental and theoretical approaches, which
investigate the thermal equilibrium, were complemented by
methods which access nonequilibrium states of matter in the
time domain. While part of the activity aims at states and
properties which exist out of equilibrium [4–8], also new
tools for the analysis of excitations in strongly correlated
materials were introduced [9–13]. For low-energy excitations
up to 100 meV differences between the single-particle and
the population lifetimes occur due to carrier relaxation and
multiplication [14]. Such differences are absent for higher
energies [15]. Due to the complexity of the problem rather
simple models such as the Falicov-Kimball model [16,17], the
Hubbard model [18,19], or sophisticated Holstein models [20]
were studied so far. Treating an actual femtosecond (fs) laser
excitation employed in experimental realizations with optical
inter- and/or intraband transitions is challenging [21,22]. An
experimental realization of such models is possible in ultra-
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cold atomic gases [23,24]. For solid materials they represent
only a part of the full problem because delocalized Bloch elec-
trons are not included in the model though they are essential
in real materials. Therefore, it is important to treat both the
correlated electron states as well as weakly correlated Bloch
bands including the interaction between these two electron
systems.

In this Rapid Communication we analyze such an interac-
tion of correlated electrons with Bloch electrons. We investi-
gate hot electron relaxation in the charge density wave/Mott
material 1T -TaS2 by fs time-resolved photoelectron spec-
troscopy measurements and Boltzmann equation calculations,
which treat the interaction of delocalized, propagating elec-
trons in a Bloch band with the correlated electron system.
We explain the up to five times longer hot electron lifetimes
observed in the correlated, low-temperature state as compared
to the metallic, high-temperature state by a doublon bottle-
neck in the correlated state. The absence of electronic states
in the Mott gap up to an excitation energy set by the Coulomb
repulsion U reduces the phase space for electron-electron
scattering considerably and increases the hot electron life-
time in the Bloch band. Thus, the observed electron lifetime
provides insight into the excited electronic structure in the
correlated state, in particular into the interaction strength of
Bloch electrons with the strongly correlated electrons.

We perform time-resolved photoelectron spectroscopy on
1T -TaS2 as described earlier [22]. The pump excitation is in-
duced by laser pulses at 1.53 eV photon energy and 50 fs pulse
duration, which are generated by regenerative chirped pulse
amplification at a 250 kHz repetition rate in a commercial
Ti:sapphire amplifier (Coherent RegA 9040). Photoelectrons
are created by probe pulses at 6.1 eV photon energy and
100 fs pulse duration, which are obtained by frequency qua-
drupling in β-barium borate crystals and analyzed in normal
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emission geometry by an electron time-of-flight spectrometer
with ±0.02 Å−1 parallel momentum resolution and 50 meV
effective energy resolution. The cross-correlation width of
pump and probe pulses is measured on the sample surface
at maximum electron kinetic energy and is 110 ± 10 fs.
Single-crystals of 1T -TaS2 grown as described in detail in
Ref. [22] are cleaved in ultrahigh vacuum at a base pressure
of 1 × 10−10 mbar.

The investigated material 1T -TaS2 is a layered transition
metal dichalcogenide which presents a charge density wave
(CDW) order of increasing degree of commensurability the
lower the temperature T becomes [25]. At T = 370 K the
CDW is incommensurate and a Fermi-Dirac distribution func-
tion at the Fermi energy EF is observed in photoemission
spectroscopy [see Fig. 1(a)], indicating a metallic state. Below
T = 180 K, after having passed through a nearly commen-
surate (metallic) CDW state, the commensurate CDW forms
and the Ta atoms rearrange into clusters out of 13 Ta atoms
each in a

√
13 × √

13 reconstructed, triangular lattice, as
depicted in Fig. 1(c). The transition into the commensurate
CDW is accompanied by an order of magnitude increase in
the electrical resistivity and an increase of spectral weight
150 meV below EF [see Figs. 1(b) and 1(c) and Refs. [26–28]],
indicating a Mott transition of the half-filled CDW subband
close to EF [25,29]. This concept has been challenged recently
by the proposal of orbital ordering leading to the insulating
state [30]. Furthermore, variations in stacking are reported
to couple electronic states of adjacent layers [31,32]. The
broken symmetry ground states of 1T -TaS2 provide rich time-
dependent structural and electronic dynamics which have
led to various ultrafast experiments which provide many-
fold new insights into the complex interplay of lattice and
electrons in correlated systems [6,22,26,33–37]. Here, we
exploit the opportunity to compare the ultrafast electron dy-
namics for a metallic state with the CDW/Mott state in a
single material. As such 1T -TaS2 serves as a model sys-
tem to showcase the doublon bottleneck effect, as detailed
below.

Figure 1 presents photoelectron spectra on a logarithmic
intensity axis for the incommensurate, metallic CDW state
at T = 370 K [Fig. 1(a)] and the commensurate, insulating
CDW state at T = 30 K [Figs. 1(b) and 1(c)] for different
pump-probe time delays t . In the metallic case the spectra
follow a thermalized Fermi-Dirac distribution function at t �
200 fs as indicated by the dashed lines in Fig. 1(a). With
increasing t the respective electron temperature decreases,
which is explained by energy transfer to phonons [34]. At
earlier delays weak deviations from a thermalized distribution
are identified. In the insulating state the spectra exhibit a more
involved behavior. Overall, the electron distribution relaxes
towards lower energy with increasing t . However, no simple
description using a thermal distribution as for 370 K succeeds.
Spectra at different t vary weakly up to E − EF = 0.1 eV and
fan out toward higher energy. Until t = 400 fs a significant
electron population at E − EF = 0.5 eV is observed. For later
t relaxation towards E − EF = 0.1 eV is found. These effects
are observed for different incident pump fluences F [Figs. 1(b)
and 1(c)], and are more intense for higher F .

For further analysis we turn to the time-dependent pho-
toelectron intensity as a function of E − EF, because the
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FIG. 1. Time-resolved photoemission spectra detected in normal
emission geometry for (a) the metallic and (b), (c) charge density
wave/Mott state at the indicated time delay, temperature, and in-
cident pump fluence F . Insets depict the in-plane structure of Ta
atoms in the metallic and CDW state. Dashed lines in (a) indicate
thermalized electron distribution functions at electron temperatures
873, 715, and 524 K. All spectra are referenced to EF of the metallic
state.

electron dynamics in the metallic and insulating states can be
analyzed quantitatively in terms of an energy-dependent relax-
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FIG. 2. Photoelectron intensity as a function of time delay at
indicated energies for (a) the metallic and (b) the CDW/Mott state.
Solid lines represent fits (see text).

ation time τ (E − EF). Figure 2(a) shows the time-dependent
photoelectron intensity at T = 370 K, which is characterized
by a decreasing τ with increasing E − EF. The finite intensity
for 0.15 and 0.30 eV at t > 1 ps originates from thermally
populated states close to EF. Such qualitative behavior is
indeed known for metals because of the increasing phase
space for electron-electron scattering for growing E − EF

[1,2]. As depicted in Fig. 2(b), τ decreases with E − EF also
for T = 30 K, however, much weaker than for the metallic
case. At E − EF = 1.2 eV, for example, the relaxation is at
30 K clearly slower than at 370 K. We analyze the electron
dynamics by fitting the data to

N (t, E ) = [(N0e−t/τ (E ) + N1) · �(t )] ⊗ g(t ) + N2. (1)

Here, �(t ) is the Heaviside function, g(t ) is a Gaussian
function representing the cross correlation width of pump and
probe laser pulses, N1 is the population at the asymptotic value
for t > 0, and N2 is an offset. The latter two are nonzero
for metallic states at 0.15 and 0.3 eV [see Fig. 2(a)]. The
determined lifetimes τ (E ) are depicted in Fig. 3 for different
pump fluences. While for all data sets lower-energy elec-
trons exhibit longer lifetimes than higher-energy electrons,

FIG. 3. Hot electron lifetimes τ as a function of electron energy
determined by fitting the time-dependent photoelectron intensities
for different equilibrium temperatures as indicated. Horizontal error
bars indicate the analyzed, integrated spectral width. The solid line is
the result of the Boltzmann equation calculation (see the Supplemen-
tal Material [38]). The inset shows the interaction considered in these
calculations: Relaxation of a delocalized hot electron in a Bloch band
Ek mediated by excitation of a doublon-holon pair of energy ≈U in
the Fermi-Hubbard system.

we identify a systematic dependence in τ (E ) on whether the
material is in the metallic state at T = 300 and 370 K or
in the commensurate CDW/Mott state at 30 K. In the latter
case τ (E ) lies well above the values for the metallic state
independent on the chosen F . At the highest energy analyzed
the determined τ differ for 30 and 370 K by a factor of five.

In order to illustrate the distinctive features of the re-
laxation dynamics, we consider the following simple model
(see the Supplemental Material [38]). The cold electrons in
the Mott insulator state are described by the creation and
annihilation operators ĉ†

μ,s and ĉν,s with spin s ∈ {↑,↓} at the
lattice sites μ and ν. We model their internal dynamics via the
Fermi-Hubbard Hamiltonian [39,40]

ĤFH = −
∑
μ,ν,s

Jμν ĉ†
μ,sĉν,s + U

∑
μ

n̂↑
μn̂↓

μ , (2)

with the hopping matrix Jμν , the on-site repulsion U , and the
particle numbers n̂s

μ = ĉ†
μ,sĉμ,s.

The hot electrons are described by the operators â†
μ,s

and âν,s. In view of the observed fluence independence of
their relaxation (see Fig. 3), we neglect their interactions
among each other and describe their internal dynamics via
the free-electron approximation Ĥfree = ∑

k,s Ekâ†
k,sâk,s with

the Bloch band energies Ek. Since the hot electrons are ob-
served not to populate the upper Hubbard band during their
relaxation [22], we neglect direct transitions between them
and the cold electrons, i.e., we do not include transition terms
such as â†

μ,sĉν,s + H.c. (see the Supplemental Material [38]).
Nevertheless, there are interactions (e.g., Coulomb) between
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them, as described by

Ĥint =
∑

μ,ν,s,s′
V s,s′

μ,ν ĉ†
μ,sĉμ,sâ

†
ν,s′ âν,s′ , (3)

with the interaction matrix elements V s,s′
μ,ν .

As the total Hamiltonian Ĥ = ĤFH + Ĥfree + Ĥint cannot
be solved exactly, we have to employ suitable approxima-
tions. For weak interactions U and V s,s′

μ,ν , one may employ
standard perturbation theory. However, this is not possible in
the strongly correlated Mott state, so we use the method of
the hierarchy of correlations instead (see, e.g., Refs. [41–46]).
To this end, we start with a mean-field approximation of the
Mott state �̂μ ≈ (|↑〉〈↑| + |↓〉〈↓|)/2 without spin ordering,
because we have a triangular lattice which is not bipartite and
thus prevents antiferromagnetic ordering due to spin frustra-
tion. Note that we consider the propagation and interaction
of the hot and cold electrons within a single layer, i.e., we
treat them within a two-dimensional (2D) model (see the
Supplemental Material [38]).

Following a strategy analogous to Refs. [47,48], we may
derive the Boltzmann equation describing the evolution of the
distribution functions fk,s = 〈â†

k,sâk,s〉 of the hot electrons due
to their interaction with the cold electrons in the Mott insulator
state,

∂t fk,s = −
∑

s′

∫
p

∫
q

∣∣V s,s′
q

∣∣2
Mp,qδ(Ek − Ek−q − E+

p+q + E−
p )

× [ fk,s(1 − fk−q,s)(1 − f +
p+q,s′ )(1 − f −

p,s′ ) − inverse].

(4)

The integrals over momenta p and q cover the entire Brillouin
zone. As usual, V s,s′

q is the Fourier transform of the Coulomb

interaction matrix V s,s′
μ,ν evaluated at the momentum transfer

q. The above channel describes the inelastic scattering of a
hot electron from initial k to final momentum k − q while
creating a doublon-holon pair with momenta p + q and p,
described by their distribution functions f +

p+q,s′ and f −
p,s′ as

well as the matrix elements Mp,q, plus the inverse process. The
delta function in Eq. (4) corresponds to energy conservation
with the doublon and holon excitation energies

E±
p = 1

2

(
U − Jp ±

√
J2

p + U 2
)
, (5)

where Jp is the Fourier transform of the matrix Jμν .
Motivated by the experimentally observed, ultrashort dou-

blon lifetimes [22], we neglect preexisting doublon-holon
excitations in the Mott insulator state, such that the above
relaxation channel (4) is dominant. Thus, we may employ the
standard relaxation time approximation fk−q,s ≈ 0, f +

p+q,s′ ≈
0, and f −

p,s′ ≈ 0 which gives ∂t fk,s = − fk,s/τk (see the Sup-
plemental Material [38]). As further approximations, we de-
scribe the energies of the hot electrons by a parabolic dis-
persion Ek ≈ E0 + k2/(2m∗) with the effective mass m∗ and
assume that the interaction matrix V s,s′

μ,ν is dominated by the
local (on-site) term V s,s′

μ,ν ≈ V δμν in analogy to (2). Under
these assumptions we may calculate the relaxation time τk.
The qualitative k dependence of τk can be understood in terms
of phase-space arguments. As a peculiarity of two spatial
dimensions, the energy Ek−q and the “volume” factor of the

q integral in (4) are both quadratic in q. Thus, they effectively
cancel each other and τk becomes approximately independent
of k for large energies, i.e., large k.

For the strongly interacting limit U � J (i.e., deep
within the Mott insulating phase), we may further
approximate E+

p+q − E−
p ≈ U . Then we find that the plateau

of the relaxation rate τk at high energies roughly scales
with V 2m∗	2J2/U 2, where 	 is the lattice spacing [i.e., the
distance between neighboring “stars of David” in Fig. 1(c)].
For smaller energies, however, the available phase space
shrinks and eventually vanishes: If the initial energy Ek of
the hot electron becomes too small to create a doublon-holon
pair, i.e., k2/(2m∗) < U , the channel (4) closes and 1/τk
vanishes. These phase-space arguments yield an approximate
step-function behavior of 1/τk. Decay of a hot electron in
the Bloch band is mediated by excitation of a doublon-holon
pair, and this coupling imposes a bottleneck for the relaxation
(see Fig. 3). There will be further relaxation channels due to
coupling to phonons which will result in a nonzero relaxation
rate 1/τk at energies below U leading to lattice heating as
observed experimentally [34].

In order to arrive at a more quantitative comparison, we
have to specify the relevant model parameters such as J and
U , etc. Unfortunately, their precise value is still a somewhat
open question, so we assume potentially realistic values of
U = 0.35 eV and J = 0.05 eV as a working hypothesis (cf.
Ref. [22]). The Bloch band Ek ≈ E0 + k2/(2m∗) is described
by the two parameters E0 and m∗. Since photoelectrons are
observed down to quite low energies relative to EF, we as-
sume E0 = 0 [40]. Other values of E0 would just shift the
curve τ (E ) horizontally and thus do not affect the height
of the plateau at high energies. However, the effective mass
m∗ does also affect the functional form of τ (E ) as well as
the plateau height—remember the rough scaling law 1/τk ∼
V 2m∗	2J2/U 2 described above. In view of the delocalized and
quasifree nature of the hot electrons, as obtained in density
functional theory calculations in coexistence with the strongly
correlated electrons [49], we assume m∗ = me. Then, using
the approximation V s,s′

μ,ν ≈ V δμν mentioned above, we may
obtain the remaining unknown parameter V by fitting the
energy-dependent relaxation rate τ (E ), especially the plateau
height (see Fig. 3), which gives V ≈ 0.085 eV.

A value of V below U is quite natural as U is determined
by the Coulomb overlap integral between the same charge
density distributions (up to the opposite spin) of the cold
electrons in the Mott state while V corresponds to the overlap
between the charge density distributions of the cold and the
hot (Bloch band) electrons. At small energies, the fit in Fig. 3
should be taken cum grano salis because there low-energy
relaxation channels such as coupling to phonons (which we
have not included here) may become important. Nevertheless,
the result V < U obtained from the plateau at high energies
is quite robust, unless extremely small values of m∗ are as-
sumed. This coupling V shows that the Fermi-Hubbard model
[Eq. (2)] alone is not sufficient for a complete description and
should also be important for understanding other phenomena,
such as optical conductivity, charge carrier multiplication,
doublon-holon recombination, and the potential suitability of
this material for Mott transistor applications [50].
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In conclusion, we have observed hot electron decay in a
strongly correlated electron material to exhibit at high energy
E > U a rather long lifetime, which we assign to its coupling
to a secondary doublon-holon excitation acting as a bottleneck
in the decay. A model description which considers coupling
of delocalized, hot Bloch electrons with the doublon-holon
excitation provides a description of the excited electronic

structure, which we expect to have a considerable impact in
the field of strongly correlated electron materials in general.

We acknowledge fruitful discussions with Peter Kratzer
and other members of the SFB 1242. This work was funded
by the Deutsche Forschungsgemeinschaft (DFG), Grant No.
278162697 (SFB 1242).
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labeling the observed photoelectrons. As explained above, the
latter is calibrated with respect to EF. Here, we use the conven-
tion EF = 0 such that the lower Hubbard band from Eq. (2) is
just below EF = 0 (due to the finite hopping rate J = 0.05 eV)
while the upper Hubbard band is well above EF = 0 (due to
the on-site repulsion U = 0.35 eV) [see Eq. (5)]. This choice is
consistent with the Mott insulator picture and motivated by the
measured spectra, such as in Fig. 1(b), where we observe a peak
at E − EF ≈ −0.15 eV, which is absent in the metallic phase
[see Fig. 1(a)]. Thus, we interpret this peak as a signature of
the lower Hubbard band following Refs. [26,27] and references
therein. The upper Hubbard band can be observed at very short
times and positive energies around E − EF = 0.18 eV (see,
e.g., Ref. [22]). Finally, the assumption E0 = 0 is motivated
by the fact that we observe photoelectrons down to quite low
energies relative to EF even within the Hubbard gap. However,
one should bear in mind that our method is not too sensitive
to this value of E0 because changes of E0 would just shift
the curve in Fig. 3 horizontally and thus do not affect the
plateau in electron lifetimes observed for E − EF > 0.6 eV and
T = 30 K. Hence, such horizontal shifts would mainly affect
the behavior at low energies, where other effects—such as the

coupling to phonons—could play a role (but are not included in
our analysis).
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